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Measurement of cyanobacterial 
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Cyanobacterial harmful algal blooms (cyanoHABs) are a serious environmental, water quality and 
public health issue worldwide because of their ability to form dense biomass and produce toxins. 
Models and algorithms have been developed to detect and quantify cyanoHABs biomass using 
remotely sensed data but not for quantifying bloom magnitude, information that would guide water 
quality management decisions. We propose a method to quantify seasonal and annual cyanoHAB 
magnitude in lakes and reservoirs. The magnitude is the spatiotemporal mean of weekly or biweekly 
maximum cyanobacteria biomass for the season or year. CyanoHAB biomass is quantified using a 
standard reflectance spectral shape-based algorithm that uses data from Medium Resolution Imaging 
Spectrometer (MERIS). We demonstrate the method to quantify annual and seasonal cyanoHAB 
magnitude in Florida and Ohio (USA) respectively during 2003–2011 and rank the lakes based on 
median magnitude over the study period. The new method can be applied to Sentinel-3 Ocean Land 
Color Imager (OLCI) data for assessment of cyanoHABs and the change over time, even with issues such 
as variable data acquisition frequency or sensor calibration uncertainties between satellites. CyanoHAB 
magnitude can support monitoring and management decision-making for recreational and drinking 
water sources.

Cyanobacterial harmful algal blooms (cyanoHABs) are a serious environmental, water quality and public health 
issue worldwide because of their ability to form dense biomass and scum and to produce toxins such as neurotox-
ins (anatoxin-a), hepatotoxins (microcystins), and cytotoxins (cylindrospermospin)1. Cyanotoxins are capable of 
causing a wide variety of adverse human health issues including gastrointestinal distress, dermatitis, liver failure, 
or even death of domestic and livestock animals when they are exposed to water with toxins from intense cyano-
HABs2,3. CyanoHABs are considered to be increasing globally over the past few decades although observations 
are quite limited4,5. The frequency and magnitude of these blooms are expected to worsen in the future with 
increased surface water temperatures and vertical stratification6. In addition, cyanoHAB growth and intensity 
are known to be affected by weather-driven environmental and anthropogenic factors, such as shifts in rainfall 
patterns with climatology and changing agricultural practices7–9.

In order to reduce the risk of exposure to cyanotoxins, more frequent water quality assessments are needed to 
monitor the status and historical trends of cyanoHABs in inland lakes. This information is needed at regional as 
well as national scales, including lakes and reservoirs designated as drinking water sources and recreational water 
bodies. In the United States, the National Lakes Assessment (NLA)10 was designed to provide national estimates 
of lake conditions with biological, chemical, physical, and recreational/human health indicators. Through this 
program, assessments of ecologically representative samples of U.S. lakes >1 ha in size are conducted every five 
years and were last completed in 2012 (2017 is pending). However, a yearly assessment of individual lakes will aid 
in developing management strategies.

Lake assessments using traditional field sampling methods (routine laboratory analysis for measurements of phy-
toplankton pigment and cell concentration, biovolume, and biomass) are expensive, time-consuming, and often not 
feasible to carry out in multiple waterbodies or across multiple states. However, satellite-based remote sensing methods 
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can be used to monitor the current status of cyanoHABs in numerous larger water bodies on a routine basis11,12 and to 
retrospectively assess the historical status of these water bodies13. Among cyanoHAB assessment studies using remote 
sensing methods, a few have looked at several lakes at a time14–16, but a majority of the efforts have focused on one body 
of water such as the Baltic Sea17, Lake Balaton, Hungary18, the Caspian Sea19, Lake Taihu, China20,21, and Lake Erie11,12,22.

Researchers often quantify cyanobacteria as biomass measured directly or by surrogate approaches such as 
with concentrations of chlorophyll-a (Chl-a) (mg m−3)17,22–24, phycocyanin (PC) (mg m−3)25–27, or as cell concen-
trations12,28. Recent studies on multiple lakes have focused on quantifying cyanoHAB spatial extent (km2)29 and 
temporal frequency (% of observations)15. These studies have started to address management questions of change 
in spatial and temporal cyanobacteria bloom dynamics over time. Resource managers have limited resources for 
assessment and monitoring of lakes for public and environmental health. Knowing which lakes have severe or wors-
ening blooms, and which do not, allows the managers to determine viable lake management strategies. An indicator 
of bloom magnitude would provide a key addition to the previous metrics by characterizing algal bloom biomass for 
an observational time (season or year), thereby highlighting the annual scale of the blooms. In this study, we intro-
duce a metric that focuses on the magnitude of cyanoHABs in lakes and other inland water bodies. We define bloom 
magnitude as the spatiotemporal mean of the sequence of 7 or 14-day composites of maximum bloom biomass 
collected over the bloom season. In order to make the bloom magnitude comparable across lakes of different size, 
magnitude is further normalized to lake surface area. We also use rank as a key metric to compensate for significant 
changes in data frequency, and ultimately other factors like differences between satellites or calibration drift.

Nine years of European Space Agency (ESA) MEdium Resolution Imaging Spectrometer (MERIS) data 
(2003–2011) with a nominal pixel resolution of 300 × 300 m was used to estimate the annual magnitude of cyano-
HABs in Florida and Ohio lakes. The primary objectives of this study were: (1) to develop a method for estimating 
annual cyanoHAB magnitude in inland lakes and reservoirs using MERIS observations; and (2) to generate a 
baseline cyanoHAB magnitude dataset during the 2003–2011 time-period in Florida and Ohio as a case study. 
The methods are applicable to the Sentinel-3 Ocean Land Color Imager (OLCI), the replacement for MERIS, 
which was first launched on Sentinel-3A in 2016.

Data and Methods
Study area. We selected the states of Florida and Ohio as our study areas for three primary reasons (Fig. 1):

 1. To examine cyanoHAB magnitudes in lakes that are known to have cyanoHAB related water quality 
issues. These two states also have a significant number of lakes that are resolvable in MERIS/OLCI data. 
Many lakes in the Coastal Plains ecoregion, which includes Florida, are known to have cyanoHAB issues, 
with 34% of lakes known to be hypereutrophic by the NLA in 200730. The 2007 NLA also reported that 43% 
of lakes in Florida had microcystin present31. Similarly, cyanoHABs are a common water quality issue in 
the Temperate Plains ecoregion, which includes western Ohio, where 45% lakes are considered hypere-
utrophic30. Approximately 32% of lakes in Ohio had microcystin present in 200731.

 2. To consider results from lakes located in different geographic and climatic regimes. The climate in 
Florida is subtropical, with hot, humid, high precipitation summers and mild, dry winters. In contrast, 
Ohio has a temperate climate with cold winters, hot and humid summers, and year-round moderate 
precipitation32.

Figure 1. Map of the study region showing the location of lakes in (A) Florida and (B) Ohio. In total, 135 lakes 
in Florida and 21 lakes in Ohio, were resolvable with the full resolution MERIS data and are used in this study. 
Land and lakes are shown in gray and blue colors respectively.
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 3. To assess the impacts of differences in data coverage in each location. MERIS full resolution (FR) data 
collection frequency prior to 2008 was inconsistent. The temporal frequency of MERIS FR data over Ohio 
is higher than that over Florida during this time period. The consideration of two states with different tem-
poral data coverage will illustrate the effect of reduced data frequency on the bloom magnitude metrics.

Figure 2 shows the steps of the data analysis and workflow carried out in this study. Individual components of 
the data and methods are presented below.

Lake outline data. The lakes were screened for size using polygons of lakes and water bodies from the 
National Hydrography Dataset Plus version 2.0 (NHDPlusV2) lake polygons dataset33, with the condition that 
each selected water body should be resolved by a satellite image with 300 × 300 m pixel resolution. Lakes and 
other water bodies were considered resolvable if they had the equivalent of three connected non-mixed water 
pixels (i.e. three pixels without any land) within the NHDPlusV2 dataset. Further, all selected water bodies were 
screened and filtered using U.S. EPA’s 2012 NLA34 site evaluation guidelines (U.S. EPA, 2011). Waterbodies classi-
fied as intermittent or estuarine were excluded from further analysis based on NLA criteria (although some estu-
arine lakes in Florida were not identified and excluded, as discussed later). The final lake polygon layer included 
135 lakes in Florida and 21 lakes in Ohio that would be resolved in FR MERIS/OLCI imagery. The surface area 
of resolvable lakes in Florida varied from 1.26 km2 to 1427 km2 with a median surface area of 5.31 km2, whereas, 
surface areas of Ohio lakes varied from 1.98 to 53 km2 with a median of 8.9 km2. In Florida, Center Lake and Lake 
Okeechobee were the smallest and largest lakes considered in this study, respectively. In Ohio, Evans Lake and 
Pymatuning Reservoir were the smallest and largest, respectively.

Figure 2. Schematic diagram of data processing and workflow for calculating bloom magnitude and area-
normalized magnitude. Output stages in the workflow are shaded gray.
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Satellite data. MERIS Level-2 (L2) datasets were processed using the satellite automated processing system 
(SAPS) administered by the National Oceanic and Atmospheric Administration (NOAA). SAPS incorporates 
l2gen, the NASA standard software for processing L2 ocean color data that is included in NASA’s SeaWiFS Data 
Analysis Software (SeaDAS) package35, and the Shuttle Radar Topography Mission (SRTM) global land mask36. 
The l2gen-derived “rho_s” surface reflectance (ρs (unitless)) product was projected to Universal Transverse 
Mercator (UTM) projection using nearest-neighbor interpolation. The rho_s process generates a reflectance that 
corrects for top-of-atmosphere solar irradiance and removes Rayleigh radiance and molecular absorption cor-
rected for elevation. Clouds are masked using an albedo threshold algorithm corrected for turbid water, with 
the latter necessary to retain those pixels with bright reflectance from intense blooms that would otherwise be 
incorrectly masked as clouds. Land adjacency issues, including mixed land/water pixels, were detected using 
near-infrared and red-edge thresholds37, thereby ensuring that the signals originating from land vegetation were 
flagged and excluded from further analysis.

Temporal coverage and data density for the MERIS FR data has changed over the mission. Prior to 2008, 
MERIS FR data sets for North America were obtained by onboard recording, which limited data acquisition. 
From 2002–2004, there was also competition for band width with other ENVISAT instruments, which may have 
also reduced acquisition frequency. In 2008, the Canadian Centre for Remote Sensing began reception of direct 
broadcast, which assured acquisition of most North American data38. In the contiguous United States (CONUS), 
prior to 2008, FR data frequency was lower over the southern states, including Florida39. Our analysis showed 
that the number of composites with near-100% missing data (inclusive of clouds and no satellite data collected) 
varied significantly in Florida and Ohio. The mean percentage of composites with near-100% missing data varied 
from 13% to 64% in Florida from 2003–2007. During the same time period, the mean percentage in Ohio varied 
from 12–28%. In contrast, from 2008–2011, the percentage of composites with missing data decreased to 6–12% 
(in Florida) and stayed about the same (14–29%) in Ohio. When the study period was restricted to 2008–2011 
recreational months (May 1st to Oct 31st as per Ohio Environmental Protection Agency (Ohio EPA) recreational 
criteria40), Florida lakes received slightly more data coverage as compared to Ohio lakes as shown by the means of 
missing data percentage in Florida (range = 1–9%) and Ohio (0–16%).

Cyanobacteria estimation algorithm. Cyanobacterial quantity was found through a combination of bio-
mass estimation and cyanobacterial presence algorithms11,28. The Cyanobacteria Index (CI) measures a proxy of 
Chl-a absorption and provides the cyanobacterial biomass11,18,19,29,41. It is calculated with a spectral shape (SS) 
algorithm28,42 and is presented as:
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where ρs is the top of atmosphere reflectance corrected for Rayleigh radiance, λ is the central band, and λ+ and λ- 
are the adjacent reference bands. Cyanobacteria Index (CI) is calculated by centering the spectral shape at 681 nm 
and changing the sign of SS, or CI = −SS (681).

The CI evaluates Chl-a absorption at 681 nm. At 681 nm, chlorophyll in eukaryotes typically fluoresces 
strongly, leading to increased apparent reflectance that obscures chlorophyll absorption. In cyanobacteria, how-
ever, chlorophyll fluorescence is much weaker43, such that Chl-a absorption dominates the radiance signal from 
the water at 681 nm, causing the reflectance at 681 nm to decrease relative to 665 and 709 nm.

For more specific identification of cyanobacteria, a SS using 620, 665, and 681 nm was used to identify the 
presence of PC, a characteristic pigment in this taxonomic division with identifying features in this spectral 
region25,41,44. (Estimated PC concentration is not used as it has several issues, in particular, it is not a consistent 
estimator of cyanobacterial biomass, and the more usable PC concentration algorithms require robust atmos-
pheric corrections45 greatly limiting data availability.) In this case, a conditional negative SS (665) value indicates 
the presence of PC. Inclusion of 620 nm, which is the absorption peak of PC, a characteristic photopigment in 
cyanobacteria, reduces the false detection issue. In the case of cyanobacteria, SS (665) turns negative due to lower 
reflectance at 620 nm band and is used as an exclusion criterion to select only cyanobacteria. This spectral shape 
condition has also been applied by46 (their Eq. 3–4) to separate cyanobacteria from other algal blooms in African 
lakes. The CI product, when SS (665) is negative, is termed as CI-cyano and was used to estimate cyanobacteria 
biomass in this research.

For purposes of setting risk thresholds, we applied a relationship between CI and cyanobacterial cell con-
centration of 108 cells mL−1 per 1 unit of CI-cyano11. While the relationship11 was developed for Microcystis (so 
we term the value as “Microcystis-equivalent cells”), it was validated by15,41 for unspecified total cell concentra-
tions of cyanobacteria in eight U.S. eastern states across New England (Connecticut, Massachusetts, Maine, New 
Hampshire, Rhode Island, and Vermont), Ohio, and Florida. Mean absolute percent error (MAPE) of 28.6% was 
reported between field-measured cyanobacteria biomass data (cells mL−1) and satellite-derived cell biomass15. 
This CI algorithm has also been confirmed for detecting cyanobacterial blooms and estimating biomass (cells 
mL−1) in other areas18,19.

Fourteen-day and seven-day maximum temporal CI-cyano composites were computed for 2003–2007 and 
2008–2011 MERIS FR time series data. Fourteen-day intervals were chosen for compositing the 2003–2007 time 
series in order to address the FR data gaps as discussed earlier. Maximum temporal composites, that is, reporting 
of the maximum value retrieved during the 14-day or 7-day window, serve two purposes. First, many cyanoHAB 
species such as Microcystis, Aphanizomenon, and Dolichospermum, have buoyancy control mechanisms and will 
typically float to the surface in the day when vertical water column mixing is weak47. It is expected that over a 
14-day or 7-day window, cyanobacteria would be near the surface on one or more days to be captured in the 
satellite data12,47. In addition, compositing reduces the amount of missing data, particularly due to clouds and 
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sun-glint. The set of 14-day composites helped to reduce the under-sampling bias before 2008 (that was caused by 
reduced frequency in FR data acquisition discussed earlier).

Annual or seasonal bloom magnitude metric. CyanoHAB magnitude is intended to capture the com-
bination of two key aspects of an algal bloom: the amount and duration of the cyanoHAB biomass. The annual/
seasonal bloom magnitude is the mean biomass of the 14-day or 7-day maxima found in the lake over a year/
season and mathematically expressed as:

Bloom magnitude
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where, the indices P and T represent, respectively, the number of valid pixels with detectable CI-cyano in a lake, and 
the number of composite (time) sequences in each month (e.g. two composites in 2003 and four in 2011). Index M 
represents the number of months in a season/annual study period. Bloom magnitude was expressed in CI units, 
which is dimensionless. As noted above, CI-cyano can be converted to Microcystis-equivalent cells by multiplying by 
the factor 108 (cells mL−1)11,15,41, to provide a more intuitive biomass metric. In order to be able to compare bloom 
magnitude across lakes with different surface area, we normalize bloom magnitude by lake surface area as below:

Bloom magnitude dl
Lake Surface Area km

Area normalized bloom magnitude ( )
( ) (3)2− =

Lake surface area in Eq. (3), as detectable by satellite images, was estimated by identifying all pixels inside a 
lake polygon vector layer that were classified as water during 2008–2011. The number of water pixels was con-
verted to area by multiplying it by area of one MERIS FR pixel (0.09 km2). Note that the estimated surface area 
may change over time due to seasonal precipitation and evapotranspiration. However, this satellite-adjusted sur-
face area is a better representation of surface area than that available in lake databases, which often include dry 
lake beds and/or areas not covered by standing water. Henceforth, bloom metrics in Eqs. 2 and 3 are referred to as 
magnitude and area-normalized magnitude for brevity.

Based on the World Health Organization’s (WHO) cell abundance threshold48, three magnitude classes were 
considered for categorizing lakes as Low (≤20,000 cells mL−1), Moderate (20,000 ≤ cells mL−1 ≤ 100,000), and 
High (>100,000 cells mL−1) exposure health risk. We estimated the area-normalized magnitudes that are equiv-
alent to the WHO thresholds using the CI-cell abundance relation11,15,41 and normalizing this cell-equivalent 
threshold by the pixel unit area (CI threshold/0.09 km2). These area-normalized CI thresholds are ≤0.0022 for 
WHO-low, 0.0022 to 0.0111 for moderate, and >0.0111 for high. We have also added ‘Very High’ (V.High) cate-
gory when estimated cyanobacteria concentration and area-normalized magnitude exceeded 1,000,000 cell mL−1 
and 0.111, respectively.

Ranking of lakes based on the area-normalized magnitude. Satellite data frequency from 2003–
2007 was not spatially homogeneous across CONUS as discussed earlier. Varying MERIS FR data frequency 
in the CONUS adds a bias in the MERIS time series data which, in turn, can bias comparisons of lakes across 
space and time. As a result, the analysis of trends in the area-normalized magnitude data across 2003–2011 could 
produce misleading results15,29. To address this issue, the lakes were ranked based on their seasonal or annual 
area-normalized magnitude with rank 1 assigned to the lake with the greatest area-normalized magnitude in 
a specific year. When more than one lake had the same area-normalized magnitude level, the minimum pos-
sible rank was assigned to all lakes in the group. To summarize across years, each lake’s median rank for the 
observational period was used. While ranks reduce the information on absolute bloom impact that is found in 
magnitude, they offer a key advantage over magnitude by allowing us to compare lakes between years, even when 
differences in data frequency biases the magnitudes. Ranks might still be region-specific, depending on differ-
ences in data coverage. For example, magnitude scores cannot be compared (ranked) between regions (states) 
having widely varying data sampling, because the lakes with sufficiently higher data frequency might appear to 
have more severe blooms than the lakes with reduced frequency. Lakes in regions (states) with similar data cov-
erage can be compared with minimal bias.

We used a non-parametric statistic, Theil-Sen’s slope estimator49 for assessing trends in the ranks of cyanoHAB 
magnitude in a lake over time, with Kendall’s τ50 for the strength of the trend. Theil-Sen’s slope is estimated as 
the median of the set of slopes in the ranked and paired data. Theil-Sen’s estimator for slope makes no assumptions 
about error distribution and provides an unbiased estimator of trend51. Theil-Sen’s slope was expressed in the units 
of ranks yr−1 and interpreted as the number of ranks increased or decreased over time for a lake in question. A neg-
ative trend (toward the rank of 1) indicates that the lake is getting relatively worse. Kendall’s τ, by determining the 
concordance between all pairs of two ranked variables indicates the strength of a monotonic trend51. Kendall’s τ 
varies between −1 and +1, where a positive τ indicates that the ranks of both variables increase together, and a neg-
ative τ indicates that as the rank of one variable increases the other decreases. As we have a slope for direction, we 
report absolute value of τ. A τ value of |0.2| to |0.5| indicates a moderate trend and >| . |0 5  indicates a strong trend.

Results
Annual area-normalized magnitude in Florida lakes. CyanoHAB magnitude is calculated as an annual 
mean of 7- or 14-day maximum accumulation of CI in the lakes in Florida over the observation period. Therefore, 
large lakes are more likely to have a higher accumulation of biomass as compared to lakes with smaller surface 
area (Fig. 3). Normalization of magnitude by lake surface area removes the influence of lake size from the metric 
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and allows comparison of cyanobacteria area-normalized magnitude among lakes of different sizes. Results from 
2011 are shown in Fig. 3, which highlights the impact of normalization of annual bloom magnitude using the lake 
surface area. Before normalization, Lake Apopka, Lake Okeechobee, Lake George, Hancock Lake, and Right Arm 
Lochloosa Lake ranked 1st to 5th respectively in 2011. Lake Apopka, which has the fourth largest surface area, 
but year-round blooms, ranked first, whereas Lake Okeechobee, with the largest surface area but less frequent 
blooms, ranked second in terms of cyanoHAB magnitude in 2011 (Fig. 3A). When the mean annual biomass 
estimates were normalized by lake surface area, Hancock Lake, Cuthbert Lake, Thonotosassa Lake, Right Arm 
Lochloosa, and West Lake ranked in the top five positions respectively (Fig. 3B). These results highlight that: 1) 
in 2011, while Lake Okeechobee had an intense bloom that covered only a portion of the lake, most of Hancock 
Lake was impacted; and 2) the average area of Hancock Lake was more severely affected by cyanobacteria than the 
average area in Lake Okeechobee.

Area-normalized magnitude rankings for all lakes during the study period were analyzed to identify those 
lakes with the most severe cyanobacteria blooms needing attention (Fig. 4). Lakes are ordered by their median 
rank from 2003–2011 in ascending order. Hancock Lake, Lake Apopka, Lake Dora/Beauclair/Carlton, Cuthbert 
Lake, and West Lake are the top five lakes for annual area-normalized bloom magnitude in Florida (Fig. 4, 
Table 1). The three top-ranked Florida lakes exhibited little variation over time (Hancock Lake, Lake Apopka, 
and Lake Dora/Beauclair/Carlton) (Fig. 4). Obviously, for a change in rank to occur one lake changes to a lower 
rank, another lake must move to a higher rank. The changes are not evenly distributed. Six lakes showed large 
declines: Right Arm Lochloosa and Lake George declined at ~6 ranks yr−1, and Clinch, Hamilton, Panasoffkee, 
and Buffum lakes declined at 3 to 5 ranks yr−1. Of these lakes, the decline was highly consistent (τ > 0.5) for 
Lochloosa, Panasoffkee, George, and Buffum, and moderately consistent (τ = 0.3–0.5) for the others. In contrast, 
only three lakes (Seven Palms, Leonore, Konomac) had consistent (τ > 0.3) and large increases in rank (better) 
changing at +6–7 ranks yr−1. Overall, area-normalized magnitude improved in Dias Lake, Monroe Lake, Deaton 
Lake, and Lake Griffin, which resulted in their lake ranks increasing at the rate of ~ + 2–3 ranks yr−1. Several of 
the lakes at the southern tip of Florida (e.g., Cuthbert, West), while in the Everglades, are actually estuarine with 
salinity influenced by Florida Bay. These are noted by asterisks (*) in the table.

In order to infer potential exposure risk of cyanoHABs in Florida lakes, we determined the number of lakes 
where cyanoHAB abundance exceeded the specific WHO risk thresholds of Low, Moderate, High, and V.High 
levels. A recreational Low WHO limit indicates lakes that are unlikely to have a management concern48. Out of 
135 lakes, 34–58 (range represents the number of lakes in a specific year) lakes were assigned to the High category 
with area-normalized magnitude over the study period (Fig. 5A). 2011 witnessed the maximum number of lakes 
in the high category (n = 58, ~43% of all lakes in Florida). Similarly, the area-normalized magnitude for 66–90 
lakes were in the Moderate category and 1–11 lakes were in the Low category. In 2010, all lakes were in Moderate 
and High categories. Area-normalized magnitude fell into the V.High range in 10 lakes (Right Arm Lochloosa 
Lake, Bear Lake, Parker Lake, Apopka Lake, Thonotosassa Lake, West Lake, Hancock Lake, Cuthbert Lake, Lake 
Griffin, and Lake Dora/Beauclair/Carlton, not in order) over the study period. In 2008 and 2011, eight (excluding 
Lake Griffin and Thonotosassa Lake) and nine (excluding Lake Griffin) out of those 10 lakes were categorized as 
V.High.

Without normalization by lake surface area, median magnitude data in Florida looked completely skewed 
(min = 0.007 CI, max = 15.49 CI, median = 0.05 CI), where about 90% of lakes were below annual bloom 
magnitude of one CI. The top 10% (13) having the highest median bloom magnitude had bloom magnitudes 

Figure 3. (A). Algal bloom magnitude in Florida lakes in 2011 before normalization and (B) after 
normalization by lake surface area. Area-normalized magnitude (km−2) of selected lakes provided as part of bar 
labels in parenthesis. Bar height and color are proportional to annual bloom magnitude (in A) and annual area-
normalized magnitude (in B). The width of the bars is proportional to the lake surface area. Note that the color 
bars are log-scaled.
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between 1.11–15.5 CI. Of these, six are also in the top 10% of the area-normalized magnitude (Apopka, Griffin, 
Dora/Beauclair/Carlton, Hancock, and Jesup). Some of these lakes with large bloom magnitude, e.g., Istokpoga, 
Kissimmee, and Tohopekaliga, ranked in the 2nd quartile (27 and below) when area-averaged.

Seasonal area-normalized magnitude in Ohio lakes. CyanoHAB magnitude analyses in Ohio lakes 
during the recreational season (May 1st to Oct 31st) showed that Grand Lake St. Marys (Rank 1, IQR = 0), Buckeye 
Lake (Rank 2, IQR = 0.25), and Indian Lake (Rank 3, IQR = 0.25) are the top three lakes by median seasonal 
area-normalized magnitude rank in Ohio from 2003–2011 (Figs. 6–7, Table 2). These top three lakes maintained 
the ranks consistently and were in WHO High category with area-normalized magnitude > 0.011 confirming 
severe CyanoHAB issue over time. Unlike the case for Florida, the variance in rank change for Ohio lakes during 
the study period is negligible, indicating that lakes maintained their area-normalized magnitude ranks consist-
ently every year. However, there were substantial differences in cyanoHAB magnitude among different Ohio 
lakes. For instance, the median area-normalized magnitude in Grand Lake St. Marys (0.27 km−2) was ~12 times 

Figure 4. First panel: Annual area-normalized magnitude (km−2) in the top 50 Florida lakes. Green, orange, 
and red dotted lines represent equivalent WHO thresholds of 20,000, 100,000, and 1,000,000 cells mL−1 limits; 
second panel: the inter-quartile range of area-normalized magnitude ranks in top-ranked Florida lakes over 
2003–2011 ordered by their median rank over the 9 year period. Median values or ranks are highlighted in red 
vertical lines inside the box. Annual area-normalized magnitude rank data points are overlaid on inter-quartile 
boxes to highlight the variation, where the color of the scatter points indicate data year (tan: start year and 
deep green: end year). Third panel: green/red bar plot shows Sen’s slope (trends in rank change) during 2003–
2011. Green/red color represents positive/negative trend meaning area-normalized magnitude for a lake is 
decreasing/increasing over time. Fourth panel: bars show Kendall’s τ (absolute values) representing consistency 
in rank-change trend over time. Dotted lines in Kendall’s τ plot mark the τ values at 0.2 and 0.5.
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Lake Name

Surface 
Area+ 
(km2) State

Median Bloom 
Magnitude (dl)

Median Area-
normalized 
Magnitude 
(km−2)

Median 
Rank

Sen’s Slope 
(Ranks 
yr−1) Kendall’s τ

Hancock, Lake 17.01 FL 2.457 0.144 1 0.00 −0.20

Apopka, Lake 121.5 FL 15.497 0.128 2 0.46 0.43

Lake Dora/Beauclair/Carlton 21.24 FL 3.077 0.145 3 0.65 0.41

Cuthbert Lake* 3.42 FL 0.423 0.124 5 −1.10 −0.50

West Lake* 7.47 FL 0.987 0.132 6 −2.13 −0.61

Parker, Lake 7.65 FL 0.712 0.093 6 0.35 0.24

Bear Lake* 3.15 FL 0.291 0.092 8 0.00 0.00

Lake Griffin 38.88 FL 3.297 0.085 9 2.00 0.34

Thonotosassa, Lake 2.97 FL 0.243 0.082 11 −0.88 −0.37

Marion, Lake 10.71 FL 0.607 0.057 11 −0.70 −0.26

Jesup, Lake 29.61 FL 2.338 0.079 12 −0.27 −0.11

Howard, Lake 2.16 FL 0.137 0.063 13 0.55 0.29

Right Arm Lochloosa Lake 21.51 FL 1.461 0.068 15 −6.63 −0.82

Eustis, Lake 29.79 FL 1.485 0.050 16 1.62 0.28

Lake Harris 71.1 FL 3.166 0.045 17 0.00 0.03

Lake Pierce 13.77 FL 0.707 0.051 17 −2.58 −0.67

Juliana, Lake 3.51 FL 0.169 0.048 19 −0.50 −0.03

Yale, Lake 14.94 FL 0.974 0.065 19 −0.26 −0.06

Marian, Lake 18.27 FL 0.920 0.050 20 −0.08 −0.09

Alfred, Lake 2.43 FL 0.096 0.040 21 −0.95 −0.22

Eloise, Lake 4.14 FL 0.163 0.039 21 0.45 0.20

Deaton, Lake 1.8 FL 0.104 0.058 21 2.13 0.33

Mud Lake 1.71 FL 0.060 0.035 23 −2.31 −0.54

Trafford, Lake 5.49 FL 0.211 0.038 23 −1.27 −0.14

Monroe Lake* 2.7 FL 0.065 0.024 24 3.00 0.37

Ariana, Lake 3.69 FL 0.132 0.036 26 −0.50 −0.11

Reedy Lake 13.41 FL 0.538 0.040 27 1.65 0.31

Orange Lake 23.58 FL 0.602 0.026 29 −1.79 −0.25

Lake Bryant 3.78 FL 0.091 0.024 30 1.27 0.20

Rochelle, Lake 1.98 FL 0.040 0.020 30 −0.55 −0.11

Istokpoga, Lake 90.99 FL 1.797 0.020 31 −0.45 −0.08

Cypress Lake 11.61 FL 0.282 0.024 32 0.73 0.29

Haines, Lake 2.52 FL 0.052 0.021 33 1.08 0.34

Panasoffkee, Lake 9.99 FL 0.204 0.020 35 −4.00 −0.50

Seven Palm Lake* 5.04 FL 0.065 0.013 37 6.08 0.39

Kissimmee, Lake 118.8 FL 1.969 0.017 39 −0.71 −0.08

Beresford, Lake 2.7 FL 0.044 0.016 40 −1.90 −0.39

Tohopekaliga, Lake 64.71 FL 1.113 0.017 40 −3.00 −0.37

Banana River 3.24 FL 0.046 0.014 41 −0.95 −0.11

Leonore, Lake 1.35 FL 0.021 0.016 45 7.00 0.56

George, Lake 172.71 FL 2.092 0.012 45 −6.13 −0.56

Lake Woodruff, Lake Dexter 17.37 FL 0.208 0.012 47 −0.63 −0.22

Dias, Lake 2.52 FL 0.029 0.012 47 3.25 0.33

Coot Bay Pond* 4.14 FL 0.044 0.011 48 4.29 0.17

Cherry Lake 1.62 FL 0.023 0.014 48 2.00 0.06

Hamilton, Lake 8.1 FL 0.100 0.012 49 −4.47 −0.59

Konomac Lake 4.05 FL 0.035 0.009 50 7.20 0.65

Clinch, Lake 4.14 FL 0.049 0.012 51 −5.00 −0.87

Buffum, Lake 4.95 FL 0.051 0.010 53 −3.67 −0.50

McLeod, Lake 1.53 FL 0.017 0.011 53.5 6.45 0.40

Table 1. Summary of median annual bloom magnitude, median annual area-normalized magnitude and their 
ranks of top 50 lakes in Florida (2003–2011). +Lake area represented by MERIS pixels. * Indicates estuarine 
lake at the southern tip of Florida.
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Figure 5. The number of lakes in Florida and Ohio classified as high, moderate, and low bloom categories 
based on recreational WHO cyanobacterial cell density limits.

Figure 6. First panel: Seasonal area-normalized magnitude (km−2) in Ohio lakes. Green, orange, and red dotted 
lines represent equivalent WHO thresholds of 20,000, 100,000, and 1,000,000 cells mL−1 limits; second panel: 
the inter-quartile range of area-normalized magnitude ranks in top-ranked Ohio lakes over 2003–2011 ordered 
by their median rank over the 9 year period. Median values or ranks are highlighted in red vertical lines inside 
the box. Annual area-normalized magnitude rank data points are overlaid on inter-quartile boxes to highlight 
the variation, where the color of the scatter points indicate data year (tan: start year and deep green: end year). 
Third panel: green/red bar plot shows Sen’s slope (trends in rank change) during 2003–2011. Green/red color 
represents positive/negative trend meaning area-normalized magnitude for a lake is decreasing/increasing over 
time. Fourth panel: bars show Kendall’s τ (absolute values) representing consistency in rank-change trend over 
time. Dotted lines in Kendall’s τ plot mark the τ values at 0.2 and 0.5.
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higher than 50% of the lakes in Ohio (Table 2). Out of 21 lakes in Ohio, there are three lakes – Ladue Reservoir, 
Clarence J. Brown Reservoir, and Evans Lake, where the relative rank decreased, or the area-normalized mag-
nitude deteriorated over time (slope = ~1–1.5 ranks yr−1). These lakes showed relative decline against other 
lakes that showed relative improvement, especially East Fork Lake, Pymatuning reservoir, Lake Milton, Bresler 
Upground Reservoir, and Michael J Kirwan Lake.

Based on the WHO recreational thresholds, 13 to 16 lakes (~62–76%) had an area-normalized magnitude 
in the High category (Fig. 5B). Years 2003 and 2009 had the maximum number of lakes (n = 16) in the High 
magnitude category and years 2004 and 2005 had the minimum number of lakes (n = 13) in the High cate-
gory. Similarly, 2–6 (~10–29%) and 1–4(~5–14%) lakes were under Moderate and Low categories, respectively. 

Figure 7. Bar plot showing median area-normalized magnitude (km−2) in Ohio lakes during the recreational 
season over the study period (2003–2011). Width of bars is proportional to lake surface area, height and color 
of the bars are proportional to the median annual area-normalized magnitude (km−2). Median values of the top 
five lakes are provided as part of bar labels inside the parenthesis.

Lake Name
Surface 
Area+ (km2) State

Median Bloom 
Magnitude (dl)

Median Area-
normalized 
Magnitude (km−2)

Median 
Rank

Sen’s Slope 
(Ranks yr−1) Kendall’s τ

Grand Lake St. Marys 47.97 OH 13.07 0.272 1 0 −0.35

Buckeye Lake 9.27 OH 2.091 0.226 2 0 0.4

Indian Lake 16.29 OH 1.591 0.098 3 0 −0.36

Ladue Reservoir 4.77 OH 0.177 0.037 4 −1.5 −0.53

Clarence J Brown Reservoir 7.38 OH 0.24 0.032 6 −1 −0.46

Pymatuning Reservoir 53.1 OH, PA 1.636 0.031 7 1 0.4

Mosquito Creek Lake 27 OH 0.846 0.031 7 −0.08 −0.09

Bresler Upground 
Reservoir 2.25 OH 0.061 0.027 8 0.39 0.34

Evans Lake 1.98 OH 0.047 0.024 8 −1 −0.51

East Fork Lake 6.57 OH 0.176 0.027 9 1 0.42

Hoover Reservoir 9.72 OH 0.145 0.015 11 −0.5 −0.2

Senecaville Lake 11.61 OH 0.248 0.021 11 −0.21 −0.11

Berlin Lake 8.91 OH 0.197 0.022 11 0.61 0.2

Tappan Lake 6.75 OH 0.092 0.014 14 0.27 0.17

Shenango River Lake 11.07 OH, PA 0.146 0.013 15 0.2 0.08

Pleasant Hill Lake 2.43 OH 0.027 0.011 15 0 −0.03

Rocky Fork Lake 6.12 OH 0.057 0.009 16 0.45 0.27

Lake Milton 5.94 OH 0.028 0.005 18 0.46 0.41

Caesars Creek Reservoir 9.09 OH 0.071 0.008 18 0.5 0.29

Williams Lake 9.72 OH 0.008 0.001 20 −0.15 −0.28

Michael J Kirwan Lake 7.92 OH 0.007 0.001 20 0.18 0.61

Table 2. Summary of median seasonal bloom magnitude, median seasonal area-normalized magnitude and 
their ranks and statistics (Sen’s Slope and Kendall’s τ) of lakes in Ohio (2003–2011). Seasonal data (May 1st-Oct 
31st). +Lake area represented by MERIS FR pixels.
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Area-normalized magnitude in Grand Lake St. Marys stayed in the V.High category throughout the study period. 
Similarly, the area-normalized magnitude in Buckeye Lake fell in the V.High category during 2003–2007 and in 
2011. Bloom magnitude in Indian Lake reached the V.High threshold only in 2007. Median bloom magnitude 
data before normalization clearly highlighted four lakes: Grand Lake St. Marys (13.07 CI), Buckeye Lake (2.09 
CI), Pymatuning Reservoir (1.64 CI), and Indian Lake (1.59 CI), where bloom magnitudes were one order of 
magnitude higher than the rest of the lakes.

Comparison of area-normalized magnitude in Florida and Ohio lakes. In order to compare Florida 
and Ohio, the magnitudes from the two states were combined and lakes were then ranked. In the combined data-
set, the seasonal area-normalized magnitude estimation was limited to a time period of May 1st–Oct 31st for each 
year to exclude the snow/ice-covered winter months and to include area-normalized magnitude status during the 
typical cyanoHAB season. In addition, a comparison between the two states was only performed from 2008–2011 
to avoid any positive bias in the MERIS FR data in Ohio relative to Florida prior to the year 2008.

Among all lakes from the two states, Grand Lake St. Marys (OH), Hancock Lake (FL), Apopka Lake (FL), 
Cuthbert Lake (FL), Lake Dora/Beauclair/Carlton (FL), West Lake (FL), Right Arm Lochloosa Lake (FL), Parker 
Lake (FL), Buckeye Lake (OH), and Thonotosassa Lake (FL) are among the top ten lakes based on median 
area-normalized magnitude rank as observed from 2008 to 2011 (Fig. 8, Table 3). Based on seasonal magni-
tude (not normalized), Apopka Lake in Florida (15.75 CI), Grand Lake St. Marys in Ohio (12.78 CI), and Lake 
Okeechobee in Florida (12.71 CI) are top three lakes in descending order (Fig. 9), reflecting the large magnitude 
blooms that occurred in these large lakes.

Discussion
Evaluating severity each year and comparing lakes provides a potentially important resource for managers, 
including under such regulatory frameworks as the European Union Water Framework Directive52 and the U.S. 
Clean Water Act53,54. In Lake Erie, an assessment of magnitude (over a 30-day period) from satellite proved essen-
tial to the development of nutrient target strategies55, and has also led to an annual forecast of bloom severity45. In 
comparison to satellite, traditional routine monitoring is difficult and expensive. Exceptionally strong programs 
such as Ohio EPA’s drinking water program may collect a sample each week in a water body (although for toxin 
only)56. More common for a water quality monitoring program is monthly or quarterly sampling of water quality 
(including Chl-a), such as seen in Florida’s several monitoring programs57,58.

The results presented here capture the relative severity of cyanobacterial blooms observed in state monitoring 
programs. In Ohio, the concentration of microcystin toxins is the most common water quality measurement. 
Three of the top four lakes (Grand Lake St. Marys, Buckeye, and LaDue) consistently reported the highest micro-
cystin concentrations of the observed lakes when Ohio EPA started sampling in 2010, and these were well above 
the WHO recreational risk levels (10 µg L−1)15. These lakes are also currently listed as impaired due to algae and 
associated microcystin56. The fourth, Indian Lake, does not have routine sampling.

In Florida, we verified the ranking using field Chl-a data for lakes found in both the Florida Water Atlas58 
and in the top 50 lakes from our satellite-based observations (as in Table 1). Similar to annual area-normalized 
magnitude estimation, we calculated annual mean Chl-a concentration for the study years 2003–2011 by taking 
the mean of monthly mean Chl-a concentrations for all samples from a lake available in the database. To match 
area-normalized magnitude, we calculated the median of annual mean Chl-a concentrations over the study 
period. We further ranked the ten lakes based on median area-normalized magnitude and median of annual 
mean Chl-a concentration over nine-year study period (Fig. 10), and found similar results across these lakes from 
Lake Hancock (1 in both) to Hamilton Lake (rank 10 among this set of lakes, and 49 in the larger satellite dataset).

Two studies with satellite-based methods examined Ohio and Florida lakes, and had similar conclusions about 
the most impacted lakes as found here, although they use different methods. Gorham et al.27 used 10 years of 
MERIS data (2002–2011) to estimate PC with a semi-analytical model25. Lakes were evaluated using the maxi-
mum PC concentration for the year at each pixel in each lake. This approach would rank a lake having a single day 
of high concentration as more severe than a lake with a slightly less severe long-duration bloom. Regardless, this 
approach also put Grand Lake St. Marys, Buckeye Lake, Indian Lake, and Seneca Lake as the top four, matching 
our result.

Clark et al.15 focused on bloom frequency. They calculated cyanoHAB frequency for Ohio and Florida lakes 
as the fraction of total pixel observations where cyanoHAB abundance exceeded the WHO’s threshold of 100,000 
cells mL−1, and then ranked those lakes by the overall frequency during 2008–2011 study period. They concluded 
that Lake Apopka in Florida (cyanoHAB frequency = 99.1%) and Grand Lake St. Marys in Ohio (cyanoHAB 
frequency = 83.1%) had the highest cyanoHAB frequency during 2008–2011. Their top ten lakes from Florida 
based on cyanoHAB bloom frequency15 (in order: Apopka (1), Pierce, Dora, Marion, Howard, Parker, Hancock, 
Harris, Jesup, and Juliana (10)) are in the top 18 lakes in our study (Fig. 4). As expected, a comparison of Florida 
lake ranks based on the frequency and area-normalized magnitude highlights differences in information between 
the methods. A lake with a persistent moderate bloom would rank higher in frequency than in magnitude; an 
example is Lake Pierce (rank 2 in frequency, 9 in magnitude). A lake with short intense blooms would rank 
higher in magnitude than in frequency. An example is Hancock Lake, which has intense annual blooms (Chl-a 
of 300–500 mg m−3) that only last for a few months58, and ranks 1 in area-normalized magnitude and 7 in fre-
quency. The difference between metrics can be more acute in large lakes, like Lake Okeechobee, which have 
blooms that are large in magnitude but do not cover most of the lake (Fig. 9). A single metric cannot highlight all 
aspects of cyanoHABs; complementary cyanoHAB metrics representing factors like bloom frequency, area, and 
area-normalized magnitude are needed.

Wind-driven mixing in the water column can add uncertainty to the cyanoHAB magnitude estimates for 
species with buoyancy regulation, such as Microcystis aeruginosa and Aphanizomenon flos-aquae. Satellite 
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algorithms, in bloom conditions, detect cyanobacteria concentration only near the surface. Previous studies have 
reported that wind stress can increase vertical mixing of cyanobacteria cells and thereby reduce the ability of the 
ocean or water color sensor to detect the majority of the biomass12. Therefore, persistent high wind (>7.7 m s−1 as 
observed in Lake Erie)11, when combined with frequent cloud cover (such that only windy days during the bloom 
season are imaged) may occasionally lead to underestimation of cyanoHAB biomass or area-normalized magni-
tude. Cloud cover, sun glint, and the effectiveness of masking algorithms for other invalid pixels (e.g. mixed land 
and water at the shore, dry lake bed, algal mats, and vegetative areas) may add uncertainty to the satellite-based 
measurements. Cloud and glint impacts should be uniform through a region, but the other factors might bias 
specific lakes. Another source of uncertainty could come from the use of the CI-cyanobacteria cell count relation-
ship when the analysis would be scaled up to the CONUS lakes. In Lunetta et al.41, a CI-cyanobacteria biomass 
relationship was demonstrated using field data collected from lakes in the US states across Ohio, Florida, and 
throughout New England. The same CI-cyano and cyanobacteria biomass relationship was revised and presented 

Figure 8. First panel: Seasonal area-normalized magnitude (km−2) in the top 50 Florida and Ohio lakes. Green, 
orange, and red dotted lines represent the equivalent WHO thresholds of 20,000, 100,000, and 1,000,000 cells 
mL−1 limits. Lakes with white and shaded bars are located in Florida and Ohio, respectively; second panel: the 
inter-quartile range of area-normalized magnitude ranks in top-ranked Florida lakes over 2008–2011 ordered 
by their median rank over the 4 year period. Median values or ranks are highlighted in red vertical lines inside 
the box. Annual area-normalized magnitude rank data points are overlaid on inter-quartile boxes to highlight 
the variation, where the color of the scatter points indicate data year (tan: start year and deep green: end year). 
Third panel: green/red bar plot shows trends in rank change during 2008–2011. Green/red color represents 
positive/negative trend meaning area-normalized magnitude for a lake is decreasing/increasing over time. 
Fourth panel: bars show Kendall’s τ (absolute values) representing consistency in rank-change trend over time. 
Dotted lines in Kendall’s τ plot mark the τ values at 0.2 and 0.5.
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Lake Name

Surface 
Area 
(km2)+ State

Median Bloom 
Magnitude (dl)

Median Area-
normalized 
Magnitude 
(km−2)

Median 
Rank

Sen’s Slope 
(Ranks 
yr−1) Kendall’s τ

Grand Lake St. Marys 47.97 OH 12.788 0.267 1.00 0.00 −0.24

Hancock, Lake 17.01 FL 3.630 0.213 2.00 0.25 0.18

Apopka, Lake 121.50 FL 15.754 0.130 4.00 1.50 0.91

Cuthbert Lake* 3.42 FL 0.513 0.150 4.50 −1.25 −0.55

Lake Dora/Beauclair/Carlton 21.24 FL 3.452 0.163 5.00 1.08 0.33

West Lake* 7.47 FL 0.950 0.127 5.00 −1.00 −0.91

Right Arm Lochloosa Lake 21.51 FL 2.424 0.113 7.50 −0.67 −0.33

Parker, Lake 7.65 FL 0.963 0.126 7.50 1.00 0.55

Buckeye Lake 9.27 OH 0.809 0.087 11.00 −7.00 −0.33

Thonotosassa, Lake 2.97 FL 0.342 0.115 11.50 −5.92 −0.33

Lake Griffin 38.88 FL 3.649 0.094 13.00 3.33 0.33

Indian Lake 16.29 OH 1.535 0.094 14.00 0.67 0.18

Bear Lake* 3.15 FL 0.278 0.088 14.50 −2.83 −0.33

Jesup, Lake 29.61 FL 2.212 0.075 15.50 −3.50 −0.67

Marion, Lake 10.71 FL 0.893 0.083 15.50 −0.17 −0.18

Lake Pierce 13.77 FL 1.155 0.084 17.00 1.67 0.55

Lake Harris 71.10 FL 4.481 0.063 20.00 13.33 0.67

Yale, Lake 14.94 FL 1.114 0.075 20.00 1.75 0.18

Howard, Lake 2.16 FL 0.162 0.075 20.00 2.08 0.33

Marian, Lake 18.27 FL 1.093 0.060 21.00 −2.33 −0.33

Alfred, Lake 2.43 FL 0.179 0.073 21.00 −1.08 0.00

Juliana, Lake 3.51 FL 0.194 0.055 21.50 −1.25 −0.33

Ladue Resevoir 4.77 OH 0.291 0.061 22.00 3.42 0.55

Mud Lake 1.71 FL 0.090 0.053 25.50 −7.58 −0.67

Eustis, Lake 29.79 FL 1.475 0.050 26.50 18.00 1.00

Trafford, Lake 5.49 FL 0.244 0.044 28.50 −0.50 −0.18

Eloise, Lake 4.14 FL 0.172 0.042 29.00 −5.75 −0.33

Ariana, Lake 3.69 FL 0.169 0.046 30.00 −5.25 −0.33

Clarence J Brown Reservoir 7.38 OH 0.270 0.037 30.50 1.83 1.00

Rochelle, Lake 1.98 FL 0.066 0.033 31.50 3.17 0.00

Orange Lake 23.58 FL 0.834 0.035 34.00 2.50 0.91

Mosquito Creek Lake 27.00 OH 0.912 0.034 35.00 −0.33 0.00

Beresford, Lake 2.70 FL 0.086 0.032 36.50 −5.50 −0.33

Reedy Lake 13.41 FL 0.479 0.036 36.50 −2.67 0.00

Evans Lake 1.98 OH 0.053 0.027 37.00 −5.67 −0.33

Panasoffkee, Lake 9.99 FL 0.259 0.026 37.50 5.17 0.00

Deaton, Lake 1.80 FL 0.066 0.036 38.00 2.17 0.00

Istokpoga, Lake 90.99 FL 2.493 0.027 39.00 −3.33 −0.33

Hamilton, Lake 8.10 FL 0.193 0.024 41.50 −4.50 −0.33

Banana River 3.24 FL 0.074 0.023 42.50 0.83 0.00

George, Lake 172.71 FL 5.049 0.029 43.00 −13.00 −0.67

Cypress Lake 11.61 FL 0.306 0.026 43.50 −1.17 0.00

Cherry Lake 1.62 FL 0.040 0.025 43.50 5.00 0.33

Tohopekaliga, Lake 64.71 FL 1.536 0.024 44.50 −0.50 −0.18

Haines, Lake 2.52 FL 0.060 0.024 44.50 −0.58 0.00

Monroe Lake* 2.70 FL 0.073 0.027 45.50 −22.08 −0.33

Pymatuning Reservoir 53.10 OH, PA 1.056 0.020 46.00 12.50 1.00

Berlin Lake 8.91 OH 0.168 0.019 47.50 11.00 0.67

East Fork Lake 6.57 OH 0.154 0.023 47.50 8.83 0.33

Bresler Upground Reservoir 2.25 OH 0.044 0.019 51.00 −2.92 0.00

Table 3. Summary of median seasonal bloom magnitude, median seasonal area-normalized magnitude and 
their ranks and statistics (Sen’s Slope and Kendall’s τ) of lakes in Florida and Ohio (2008–2011). +Surface 
area determined by MERIS FR pixels within the lake polygon. * Indicates estuarine lake at the southern tip of 
Florida.
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in Clark et al.15 with more meaningful error estimates (MAPE = 28.6%). Error in manual cell enumeration is 
inversely proportional to the number of colonies counted48. 20–30% error is expected and considered accept-
able when at least 400 units or colonies are counted although Chorus and Bartram48 report that normally 20–40 
colonies may be present in 100 mL of sampled water from the field. Therefore, even higher than 20–30% error, 
only from field cell density, cannot be ruled out. Similarly, variability in the spatial distribution of biomass in a 
bloom can add up to two orders of magnitude difference in biomass, as observed by59 in a cyanobacteria bloom 
in the Gulf of Finland. Spatiotemporal variability in biomass in a diurnal scale can add significant uncertainty as 
well60. Therefore, after considering errors from multiple sources, it is expected to have greater than 30% error or 
difference in satellite estimates, when compared with field measured cell density from a point source in a bloom 
event. Additionally, a CI-cyano to Chl-a relationship, established by Tomlinson et al.16 for Florida lakes, could be 
used in future studies, although the CI-cyano to Chl-a relationship may require additional examination before 
applying to all CONUS lakes.

Lake size presents a potential limitation on decisions based on area-normalized magnitude. One such example 
is Lake Okeechobee in Florida, which is the largest freshwater lake in Florida and the 9th largest freshwater lake 
(by area) in the United States. Due to its size and societal importance (for water supply, tourism, and ecologi-
cal impacts), cyanoHAB issues in this lake have been widely covered by the press and media, thereby creating 
cyanoHAB awareness at state and national levels. While Lake Okeechobee was ranked second in bloom magni-
tude (behind Apopka, a moderately large lake), based on the area-normalized magnitude, Lake Okeechobee was 
ranked 95th among the Florida lakes. This is because the bloom area is simply a small percentage of surface area 
in such a large lake. Therefore, for larger lakes, annual or seasonal bloom magnitude numbers should be used for 
lake water management and decision making related to water quality. In contrast, area normalization highlights 
cyanoHABs in most of the smaller lakes such as Hancock Lake, Lake Dora/Beauclair/Carlton, and many others, 

Figure 9. Left panel: Median seasonal bloom magnitude in 15 Florida and Ohio lakes over the study period 
(2008–2011) ordered by their values. Lake labels include the state name the lake is associated with and the 
number inside brackets represents the median area-normalized magnitude rank over the same study period. 
Right panel: median area-normalized magnitude for the same lakes during the same study period provided for 
comparison. Gray-colored bars represent lakes from Ohio.

Figure 10. Relative comparison of lake ranks calculated from the annual area-normalized magnitude and 
measured annual mean Chl-a concentration. Numbers associated with the lake names in the x-axis tick label 
represent the median lake rank as in Table 1.
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which may not get enough attention due to their size, although they equally bear the potential of causing an 
adverse effect on health and the environment.

The proposed bloom magnitude metric provided a synoptic view in lakes by capturing spatiotemporal mean 
areal cyanobacteria biomass. Further normalization of bloom magnitude by lake surface area provided compa-
rable and actionable information for water quality managers inside states or other jurisdictional boundaries. 
The relative ranking of lakes allows the MERIS record (2003–2011) to be utilized within a state or a region, as 
the MERIS FR temporal frequency is expected to be similar. Ranks and nonparametric statistics provide robust 
parameters that do not depend on the calibration accuracy and precise thresholds, as compared to the direct 
metrics like a bloom area, bloom frequency, or area-normalized magnitude. The rank-based metric has additional 
power of allowing the use of multiple satellites without introducing biases between the different satellite data sets. 
For example, OLCI on Sentinel 3A and 3B may not currently match the MERIS calibration as the OLCI calibra-
tion is still on-going as of this writing, but the ranking of the lakes would eliminate the systematic bias in the data 
due to differences in calibration coefficients. Therefore, area-normalized magnitude ranks estimated from OLCI 
should be consistent with those from MERIS in each season, allowing identification of those lakes that are chang-
ing in bloom magnitude. The area-normalized magnitude should be inspected (together with sample frequency) 
to confirm that there is not a systemic change in all the lakes in a region over the time period of interest. This 
problem is less likely to occur if many lakes are considered in the analysis, or if they have fundamentally different 
environmental characteristics. These sensors cannot resolve all lakes of interest in a state. Narrow lakes and some 
rivers are a particular problem. For those small or narrow water bodies, Sentinel-2 may provide a solution, but 
that requires more research, as some key bands (620 and 681 nm) are not on that sensor.

The method presented in this study captures an assessment of cyanoHAB magnitude, which is the cyanobac-
teria biomass for the year or season. Normalization of bloom magnitude by lake surface area let us compare the 
cyanoHAB magnitude across lakes with varying size. Our approach to rank the lakes by median area-normalized 
magnitude helped us to highlight the top lakes, which need immediate attention from water quality managers. 
Provided below are three advantages of the ranking:

 1. This approach uses the power of ranked and non-parametric statistics in order to be able to use the MERIS 
time series (2003–2011) in a state or a localized region irrespective of bias in temporal coverage. However, 
if contemporaneous satellite data collection frequency is different between two areas, they cannot be com-
pared side-by-side and lakes in those areas should be analyzed separately.

 2. This approach would also allow the use of Sentinel-3 OLCI data along with MERIS time series even though 
the sensor calibration coefficients of OLCI are still being refined and may not match with MERIS. This 
would enable a comparison of cyanoHAB bloom magnitude derived from OLCI with the historic cyano-
HAB magnitude derived from MERIS.

 3. As our method also included WHO recreational thresholds, the same information may also be used for 
categorizing which lakes need pressing attention for cyanoHAB management. A specific threshold repre-
senting exposure risk can be set and lakes above that threshold may be identified as a priority during the 
observational period.

No one metric can completely represent the attributes of cyanoHAB severity of interest to water quality man-
agers. Area-normalized magnitude can provide awareness of smaller lakes that have significant blooms. However, 
the area-normalized magnitude can equate a short-lived, large, intense bloom with a long-lived, moderate bloom 
in any sized lake. Therefore, the reader is encouraged to compare other metrics such as temporal frequency15 
and bloom spatial extent29 to address related questions. These methods complement each other and can provide 
a more complete picture of cyanoHABs on a regional or national scale. The Cyanobacteria Assessment Network 
(CyAN) project13 provides the capability to scale this effort to CONUS fresh water lakes and water bodies. Our 
future work could focus on providing a comprehensive analysis of cyanoHAB magnitude in CONUS lakes and 
identifying lakes of concern.

Data availability
The satellite dataset used in the current study can be downloaded from https://oceancolor.gsfc.nasa.gov/ and 
datasets generated during this study are available from the corresponding author on request.
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